CPT Documentation

Bluesheeptoken

Feb 28, 2023

CONTENTS:

1 A sequence prediction algorithm 1
.1 Introduction o i e e e e e e e e e e e e e 1
1.2 Examples o e e e e e e e e 1
1.3 TheCptclass. e e e e e e 2
L4 Tuning o o e e e e e e e e e e e e 5
Index 7

CHAPTER
ONE

A SEQUENCE PREDICTION ALGORITHM

1.1 Introduction

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction algorithm. It is a highly explainable model and good at predicting, in a finite alphabet,
next value of a sequence. However, given a sequence, CPT cannot predict an element already present in this sequence
(Cf “Tuning” part).

This implementation is based on the following research papers
http://www.philippe-fournier-viger.com/ADMA2013_Compact_Prediction_trees.pdf
http://www.philippe-fournier-viger.com/spmf/PAKDD2015_Compact_Prediction_tree+.pdf

1.2 Examples

1.2.1 Hello World example

You can test the model with the following code

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
['hello', 'this', 'is', 'me'],
['hello', 'me']
D

model .predict([['hello'], ['hello', 'this']])
Output: [me', 'is']

http://www.philippe-fournier-viger.com/ADMA2013_Compact_Prediction_trees.pdf
http://www.philippe-fournier-viger.com/spmf/PAKDD2015_Compact_Prediction_tree+.pdf

CPT Documentation

1.2.2 Sklearn Example

This code is also compatible with sklearn tools such as Gridsearch

from sklearn.base import BaseEstimator
from cpt.cpt import Cpt
from sklearn.model_selection import GridSearchCV

class SKCpt(Cpt, BaseEstimator):

def __init__(self, split_length=0, noise_ratio=0, MBR=0):
super().__init__(split_length, noise_ratio, MBR)

def score(self, X):
Choose your own scoring function here
predictions = self.predict(list(map(lambda x: x[self.split_length:-1], X)))
score = sum([predictions[i] == X[i][-1] for i in range(len(X))]) / len(X) * 100
return score

data = [['hello', 'world'], ['hello', 'cpt'], ['hello', 'cpt']]

tuned_params = {'MBR': [0, 5], 'split_length': [®, 1, 5]}
gs = GridSearchCV(SKCpt(), tuned_params)
gs.fit(data)

gs.cv_results_

1.3 The Cpt class

class cpt.cpt.Cpt

Compact Prediction Tree class.
Attributes

split_length
[int, default O (all elements are considered)] The split length is used to delimit the length of
training sequences.

noise_ratio
[float, default O (no noise)] The threshold of frequency to consider elements as noise.

MBR
[int, default O (at least one update)] Minimum number of similar sequences needed to com-
pute predictions.

alphabet
[Alphabet] The alphabet is used to encode values for Cpt. alphabet should not be used
directly.

2 Chapter 1. A sequence prediction algorithm

CPT Documentation

Methods
compute_noisy_items Compute noisy elements.
find_similar_sequences Find similar sequences.
fit Train the model with a list of sequence.
predict Predict the next element of each sequence of the pa-
rameter sequences.
predict_k Predict the next elements of each sequence of the
parameter sequences, sorted by descending confi-
dence.
retrieve_sequence Retrieve sequence from the training data.
fit(sequences)

Train the model with a list of sequence.

The model can be retrained to add new sequences. model . fit(seql) ;model.fit(seq2) is equivalent
tomodel.fit(seql + seq2) with seql, seq2 list of sequences.

Parameters

sequences
[list] A list of sequences of any hashable type.

Returns

None

Examples

>>> model.fit([['hello', 'world'], ['hello', 'cpt']l])

predict (sequences, multithreading=True)
Predict the next element of each sequence of the parameter sequences.

Parameters

sequences
[list] A list of sequences of any hashable type.

multithreading
[bool, default True] True if the multithreading should be used for predictions.

Returns

predictions
[list of length 1en(sequences)] The predicted elements.

Raises

ValueError
noise_ratio should be between 0 and 1. MBR should be non-negative.

1.3.

The Cpt class 3

CPT Documentation

Examples

>>> model = Cpt(Q)

>>> model.fit([['hello', 'world'],
['hello', 'this', 'is', 'me'],
['hello', 'me']
D

>>> model.predict([['hello'], ['hello', "this']])
[lmel’ lis|]

predict_k(sequences, k, multithreading=True)
Predict the next elements of each sequence of the parameter sequences, sorted by descending confidence.

Parameters

sequences
[list] A list of sequences of any hashable type.

k: int
Number of predictions to make per sequence, ordered by descending confidence.

multithreading
[bool, default True] True if the multithreading should be used for predictions.

Returns

predictions
[List[List[Any]] of dimension len(sequences) * k] The predicted elements.

Raises

ValueError
noise_ratio should be between 0 and 1. MBR should be non-negative.

Examples

>>> model = Cpt(Q)

>>> model.fit([['hello"', 'world'],
['hello', 'this', 'is', 'me'],
['hello', 'me']
D

>>> model.predict_k([['hello']], 2)
[['me', "this']]

compute_noisy_items (noise_ratio)
Compute noisy elements.

An element is considered as noise if the frequency of sequences in which it appears at least once is below
noise_ratio.

Parameters

4 Chapter 1. A sequence prediction algorithm

CPT Documentation

noise_ratio
[float] The threshold of frequency to consider elements as noise.

Returns

noisy_items
[list] The noisy items.

Raises

ValueError
noise_ratio should be between 0 and 1

find_similar_sequences (sequence)

Find similar sequences.
A sequence similar X of a sequence S is a sequence in which every element of S is in X
Parameters

sequence
[list]

Returns

similar_sequences
[list] The list of similar_sequences.

retrieve_sequence (index)

Retrieve sequence from the training data.
Parameters

index
[int] Index of the sequence to retrieve.

Returns

sequence
[list]

Examples

>>> model = Cpt()
>>> model.fit([['sample', 'data'], ['should', 'not', 'be', 'retrieved']])

>>> model.retrieve_sequence(0)
['sample', 'data']

1.4 Tuning

CPT has 3 meta parameters that need to be tuned

1.4. Tuning

CPT Documentation

1.4.1 MBR

MBR indicates the number of similar sequences that need to be found before predicting a value.

The higher this parameter, the longer the prediction. Having more similar sequences can result in a higher accuracy.

1.4.2 split_length

split_length is the number of elements per sequence to be stored in the model. (Choosing O results in taking all elements)

split_length needs to be finely tuned. As the model cannot predict an element present in the sequence, giving a too
long sequence might result in lower accuracy.

1.4.3 noise_ratio

The noise_ratio determines which elements are defined as noise and should not be taken into account.

6 Chapter 1. A sequence prediction algorithm

C

compute_noisy_items() (cpt.cpt.Cpt method), 4
Cpt (class in cpt.cpt), 2

F

find_similar_sequences() (cpt.cpt.Cpt method), 5
£fit Q) (¢pt.cpt.Cpt method), 3

P

predict() (cpt.cpt.Cpt method), 3
predict_kQ) (cpt.cpt.Cpt method), 4

R

retrieve_sequence() (cpt.cpt.Cpt method), 5

INDEX

	A sequence prediction algorithm
	Introduction
	Examples
	Hello World example
	Sklearn Example

	The Cpt class
	Tuning
	MBR
	split_length
	noise_ratio

	Index

