

CPT’s documentation

A sequence prediction algorithm

Contents:

	Introduction

	Examples
	Hello World example

	Sklearn Example

	The Cpt class
	Cpt

	Tuning
	MBR

	split_length

	noise_ratio

Introduction

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction algorithm. It is a highly explainable model and good at predicting, in a finite alphabet, next value of a sequence. However, given a sequence, CPT cannot predict an element already present in this sequence (Cf “Tuning” part).

This implementation is based on the following research papers

http://www.philippe-fournier-viger.com/ADMA2013_Compact_Prediction_trees.pdf

http://www.philippe-fournier-viger.com/spmf/PAKDD2015_Compact_Prediction_tree+.pdf

Examples

Hello World example

You can test the model with the following code

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
 ['hello', 'this', 'is', 'me'],
 ['hello', 'me']
])

model.predict([['hello'], ['hello', 'this']])
Output: ['me', 'is']

Sklearn Example

This code is also compatible with sklearn tools such as Gridsearch

from sklearn.base import BaseEstimator
from cpt.cpt import Cpt
from sklearn.model_selection import GridSearchCV

class SKCpt(Cpt, BaseEstimator):
 def __init__(self, split_length=0, noise_ratio=0, MBR=0):
 super().__init__(split_length, noise_ratio, MBR)

 def score(self, X):
 # Choose your own scoring function here
 predictions = self.predict(list(map(lambda x: x[self.split_length:-1], X)))
 score = sum([predictions[i] == X[i][-1] for i in range(len(X))]) / len(X) * 100
 return score

data = [['hello', 'world'], ['hello', 'cpt'], ['hello', 'cpt']]

tuned_params = {'MBR': [0, 5], 'split_length': [0, 1, 5]}

gs = GridSearchCV(SKCpt(), tuned_params)

gs.fit(data)

gs.cv_results_

The Cpt class

	
class cpt.cpt.Cpt

	Compact Prediction Tree class.

	Attributes

	
	split_lengthint, default 0 (all elements are considered)
	The split length is used to delimit the length of training sequences.

	noise_ratiofloat, default 0 (no noise)
	The threshold of frequency to consider elements as noise.

	MBRint, default 0 (at least one update)
	Minimum number of similar sequences needed to compute predictions.

	alphabetAlphabet
	The alphabet is used to encode values for Cpt. alphabet should not be used directly.

Methods

	compute_noisy_items

	Compute noisy elements.

	find_similar_sequences

	Find similar sequences.

	fit

	Train the model with a list of sequence.

	predict

	Predict the next element of each sequence of the parameter sequences.

	predict_k

	Predict the next elements of each sequence of the parameter sequences, sorted by descending confidence.

	retrieve_sequence

	Retrieve sequence from the training data.

	
fit(sequences)

	Train the model with a list of sequence.

The model can be retrained to add new sequences.
model.fit(seq1);model.fit(seq2) is equivalent to
model.fit(seq1 + seq2) with seq1, seq2 list of sequences.

	Parameters

	
	sequenceslist
	A list of sequences of any hashable type.

	Returns

	
	None
	

Examples

>>> model.fit([['hello', 'world'], ['hello', 'cpt']])

	
predict(sequences, multithreading=True)

	Predict the next element of each sequence of the parameter sequences.

	Parameters

	
	sequenceslist
	A list of sequences of any hashable type.

	multithreadingbool, default True
	True if the multithreading should be used for predictions.

	Returns

	
	predictionslist of length len(sequences)
	The predicted elements.

	Raises

	
	ValueError
	noise_ratio should be between 0 and 1.
MBR should be non-negative.

Examples

>>> model = Cpt()

>>> model.fit([['hello', 'world'],
 ['hello', 'this', 'is', 'me'],
 ['hello', 'me']
])

>>> model.predict([['hello'], ['hello', 'this']])
['me', 'is']

	
predict_k(sequences, k, multithreading=True)

	Predict the next elements of each sequence of the parameter sequences, sorted by descending confidence.

	Parameters

	
	sequenceslist
	A list of sequences of any hashable type.

	k: int
	Number of predictions to make per sequence, ordered by descending confidence.

	multithreadingbool, default True
	True if the multithreading should be used for predictions.

	Returns

	
	predictionsList[List[Any]] of dimension len(sequences) * k
	The predicted elements.

	Raises

	
	ValueError
	noise_ratio should be between 0 and 1.
MBR should be non-negative.

Examples

>>> model = Cpt()

>>> model.fit([['hello', 'world'],
 ['hello', 'this', 'is', 'me'],
 ['hello', 'me']
])

>>> model.predict_k([['hello']], 2)
[['me', 'this']]

	
compute_noisy_items(noise_ratio)

	Compute noisy elements.

An element is considered as noise if the frequency of sequences
in which it appears at least once is below noise_ratio.

	Parameters

	
	noise_ratiofloat
	The threshold of frequency to consider elements as noise.

	Returns

	
	noisy_itemslist
	The noisy items.

	Raises

	
	ValueError
	noise_ratio should be between 0 and 1

	
find_similar_sequences(sequence)

	Find similar sequences.

A sequence similar X of a sequence S is a sequence
in which every element of S is in X

	Parameters

	
	sequencelist
	

	Returns

	
	similar_sequenceslist
	The list of similar_sequences.

	
retrieve_sequence(index)

	Retrieve sequence from the training data.

	Parameters

	
	indexint
	Index of the sequence to retrieve.

	Returns

	
	sequencelist
	

Examples

>>> model = Cpt()
>>> model.fit([['sample', 'data'], ['should', 'not', 'be', 'retrieved']])
>>> model.retrieve_sequence(0)
['sample', 'data']

Tuning

CPT has 3 meta parameters that need to be tuned

MBR

MBR indicates the number of similar sequences that need to be found before predicting a value.

The higher this parameter, the longer the prediction. Having more similar sequences can result in a higher accuracy.

split_length

split_length is the number of elements per sequence to be stored in the model. (Choosing 0 results in taking all elements)

split_length needs to be finely tuned. As the model cannot predict an element present in the sequence, giving a too long sequence might result in lower accuracy.

noise_ratio

The noise_ratio determines which elements are defined as noise and should not be taken into account.

Index

 C
 | F
 | P
 | R

C

 	
 	compute_noisy_items() (cpt.cpt.Cpt method)

 	
 	Cpt (class in cpt.cpt)

F

 	
 	find_similar_sequences() (cpt.cpt.Cpt method)

 	
 	fit() (cpt.cpt.Cpt method)

P

 	
 	predict() (cpt.cpt.Cpt method)

 	
 	predict_k() (cpt.cpt.Cpt method)

R

 	
 	retrieve_sequence() (cpt.cpt.Cpt method)

 nav.xhtml

 Table of Contents

 		
 CPT’s documentation

 		
 Introduction

 		
 Examples

 		
 Hello World example

 		
 Sklearn Example

 		
 The Cpt class

 		
 Cpt

 		
 Cpt.fit()

 		
 Cpt.predict()

 		
 Cpt.predict_k()

 		
 Cpt.compute_noisy_items()

 		
 Cpt.find_similar_sequences()

 		
 Cpt.retrieve_sequence()

 		
 Tuning

 		
 MBR

 		
 split_length

 		
 noise_ratio

_static/plus.png

_static/file.png

_static/minus.png

